Roll No.:

Total No. of Questions: 91

[Total No. of Pages : 4

60582

B.Sc. 6th Semester Examination, July-2021

MATHEMATICS (HONS)

Paper-BHM-365

(Fluid Dynamics)

Time: Three Hours |

/ Maximum Marks: 60

Before answering the questions, candidates should ensure that they have been supplied the correct and complete question paper. No complaint in this regard, will be entertained after examination.

Note: - Attempt five questions in all, selecting one question from each Section. Q. No. 9 is compulsory. All questions carry equal marks.

Section-I

The velocities at a point in a fluid in the (a) given are system Eulerian u = x + y + z + t, v = 2(x + y + z) + t, w = 3(x + y + z) + t, obtain the displacements of a fluid particle in the Lagrangian system.

P.T.O.

- The velocity field at a point in fluid is (b) given by $\overrightarrow{q} = \left(\frac{x}{1+t}, y, 0\right)$. Find the streamlines, pathlines and streaklines.
- Derive equation of continuity in cylindrical co-ordinates.
 - Show that:

$$u = \frac{-2xyz}{(x^2 + y^2)^2}, \ v = \frac{(x^2 - y^2)z}{(x^2 + y^2)^2}, \ w = \frac{y}{x^2 + y^2}$$

are the possible velocity components of a liquid motion. Is this motion irrotational?

Section-II

- Components of acceleration in spherical (a) polar co-ordinates (r, θ, ϕ) with velocity 3. components (V_r, V_θ, V_ϕ) .
 - Homogeneous liquid is in motion in a vertical plane, within a curved tube of uniform small bore, under the action of gravity. Calculate period of oscillation.

RD-2066 (1) 60582_650

4. Obtain Bernoulli's equation for steady motion.

In a two dimensional incompressible flow, the fluid velocity components are given by u = x - 4y and v = -y - 4x. Show that velocity potential exists and determine its form as well as stream function.

Section-III

- 5. (a) State and prove Kelvin's minimum energy theorem.
 - (b) Show that there cannot be two different forms of irrotational motion for a given confined mass of incompressible inviscid liquid whose boundaries are subject to the given impulses.
- 6. (a) Determine velocity potential due to a three dimensional doublet.
 - (b) Discuss motion of a sphere through an infinite mass of a liquid at rest at infinity.

Section-IV

- 7. (a) The velocity potential function for a two dimensional flow is $\phi = x(2y 1)$. At a point $\rho(4, 5)$ determine:
 - (i) The velocity stream
 - (ii) The value of function

(b) State and prove Milne-Thomson circle theorem.

8. Find the image of a line doublet in a circle.

An infinite cylinder of radius a and density σ is surrounded by a fixed concentric cylinder of radius b and the intervening space is filled with liquid of density ρ. Prove that the impulse per unit length necessary to start the inner cylinder with velocity V is:

$$\frac{\pi^2}{b^2-a^2}\Big[(\sigma+\rho)\,b^2-(\sigma-\rho)\,a^2\Big]V$$

Section-V

- 9. (a) Write short note on sinks and doublets.
 - (b) Give examples of irrotational and rotational flows.
 - (c) Define Lagrange's stream function.
 - (d) Define term-impulsive motion.
 - (e) Discuss significance of the equation of continuity.
 - (f) State Blasius theorem.